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Adiabatic Interpretation of Particle Creation in a
de Sitter Universe
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The choice of vacuum state for a quantum scalar field (massive and arbitrarily
coupled to the gravitational field, with coupling constant j ) propagating in a
de Sitter spacetime is discussed. The problem of finite-time initial conditions for
the mode functions is analyzed, as well as how these determine the vacuum state
of the quantum system. The principle guiding the choice of vacuum state is the
following: one wants the vacuum contribution to the energy-momentu m tensor
to contain all the ultraviolet divergent terms, so that the particle creation terms are
finite, and covariantly conserved. There is a suitable set of modes (instantaneous
adiabatic basis) in which this splitting of the expectation value of the energy-
momentum tensor can be carried out. Numerical results are presented for different
initial times and the following values for the mass and the coupling constant: m
5 0.6, j 5 1/6. The nature of the particle creation effect is described and its
relationship to the concept of a horizon crossing time is shown. These numerical
results imply that back reaction can be important and should be the subject of
further research.

1. INTRODUCTION

The theory of quantum fields in a curved (classical and fixed) gravita-

tional background does not provide a general principle that selects a natural

physical vacuum state. In the absence of symmetries (in the underlying

spacetime) the choice of a vacuum state for the quantum field becomes a
difficult task.2 In this paper we study a quantum scalar field, not conformally

invariant (massless and j 5 1/6) and choose an adiabatic vacuum as the

initial state for the quantum field, which is general enough and does not

1 Theoretical Division T-6 and T-8, Los Alamos National Laboratory, Los Alamos, New Mexico
87545; e-mail: carmen@t6-serv.lanl.gov.

2 In Minkowski spacetime the presence of the PoincareÂgroup is the guiding principle, as it
singles out a natural coordinate system with respect to which one defines a vacuum state.
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necessarily share all the FRW symmetries of the background geometry. The

importance of these two choices is as follows:

1. It is known that particle creation in a conformally flat spacetime

(i.e., FRW universe) requires a nonconformal field. This means that

the quantum scalar field must be either massive or not conformally
coupled to the curvature j Þ 1/6.

2. As the underlying theory does not choose a physical state, one needs

to understand the physics of particle creation and its relationship to

the choice of finite-time initial conditions.

The paper is organized as follows. In Section 2 an example is presented

that makes explicit the importance of the choice of a physical vacuum state.

In Section 3 the basic elements of quantum field theory in a curved background
are introduced. Section 4 deals with the particular case of a de Sitter back-

ground. In Section 5 the principle guiding the choice of an adiabatic vacuum

state is stated and its relationship with finite-time initial conditions is

explained. Section 6 introduces the energy-momentum tensor of the system

under consideration. In Section 7 the method of adiabatic regularisation is

described. Section 8 introduces the concept of a generalized Bogoliubov
transformation and its relationship with the concept of adiabatic particle. The

renormalized energy-momentum tensor is calculated in this section. The

numerical results for different initial conditions are shown in Section 9. The

last section contains a brief summary of the results presented and further

applications of the approach considered here.

2. CHARGED SCALAR QED IN MINKOWSKI SPACETIME

This example illustrates the importance of choosing a physical vacuum

state [1]. Let us consider a charged scalar field F in Minkowski spacetime

in the presence of a homogeneous electric field E 5 Ez, and let us choose

the vector potential as A(t) 5 2 Etz. The wave equation for this field is

given by

[( - m 2 ieA m )2 1 m2] F (t, x) 5 0. (2.1)

The well-known symmetries of Minkowski spacetime make the previous
equation separable (in Cartesian coordinates) and one can find solutions of

the form (Fourier mode decomposition)3.

3 V is the volume of spacetime we are considering and in which we are quantizing the system.



Particle Creation in a de Sitter Universe 1275

F (t, x) 5
1

V 1/2 o
k

ak fk(t)e
ik ? x 1 b ²

k f *2 k(t) e 2 ik ? x (2.2)

with mode functions that satisfy the following harmonic differential equation:

fÈ k(t) 1 v 2
k(t) f (t) 5 0, v 2

k (t) 5 (kz 1 eEt)2 1 k2
’ 1 m2, k2

’ 5 k2
x 1 k2

y.

(2.3)

We choose for the initial quantum state of the system the vacuum correspond-

ing to this mode decomposition, that is, the state that is annihilated by all
the ak and bk. These mode functions are invariant under time reversal, that

is, (t ® 2 t, k ® 2 k), whereas the expectation value of the current (with

respect to the vacuum state defined above) j 5 jzz is odd under this exchange.

This is easy to see; suppose we consider solutions such that | fk(t) | 5 | f 2 k( 2 t) | ;
then we have the following expression for ^ jz & :

^ jz & 5
2e

V o
k

(kz 1 eEt) | fk(t) | 2. (2.4)

Therefore in the vacuum state defined by ak | 0 & 5 0 5 bk | 0 & , the expectation

value of the current vanishes. On the other hand, we know that there are

solutions of equation (2.3) with adiabatic asymptotic behavior, such that

lim
t ® 6 `

fk( 6 )(t) 5 fÄk(t), fÄk(t) 5
1

[2 v k(t)]1/2 exp F 2 i #
t

dt8 v k(t8) G
(2.5)

and with fk( 2 )(t) Þ fk( 1 )(t). Furthermore, these two families of solutions

{ fk( 2 ), f *k( 2 )} and { fk( 1 ), f *k( 1 )} are related by a Bogoliubov transformation
and each of them represents a different vacuum state [2],

fk( 2 )(t) 5 a k fk( 1 )(t) 1 b k f*k( 1 )(t). (2.6)

If the initial vacuum state (in the Heisenberg representation) is | 0( 2 ) & , that

is, the adiabatic vacuum at very early times, it is easy to show that at later
times, in the remote future, when the natural choice for a set of adiabatic

observers is { fk( 1 ), f *k( 1 )}, these inertial observers would detect particles. In

particular the number of particles detected in the kth mode is given by the

expectation value of the number operator Nk( 1 ) (in the remote future basis)

in the adiabatic vacuum at very early times, that is,4

4 The same calculation can be performed to obtain the number of antiparticles detected in the
adiabatic vacuum at very early times. One needs to replace Na

k( 1 ) by Nb
k( 1 ).
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^ 0( 2 ) | Na
k( 1 ) | 0( 2 ) & 5

def
^ 0( 2 ) | a ²

k( 1 )ak( 1 ) | 0( 2 ) & 5 | b 2
k |

5 exp 1 2 p k2
’ 1 m2

eE 2 Þ 0. (2.7)

Notice that the number of particles produced does not depend on kz and it

is time independent. These observers will measure a non-vanishing ^ jz& . This

is the Schwinger effect, which would have been completely missed in the

vacuum state that is time-reversal invariant. This example is very similar to

a quantum scalar field in a de Sitter background, and their analogies will be
made explicit in Section 4.

3. BASIC ELEMENTS OF QUANTUM FIELD THEORY IN A
CURVED SPACETIME

This section is intended to give the basic elements that come to play
when one is studying quantum fields in a classical gravitational background.

The underlying theory is semiclassical quantum field theory in the sense that

the matter fields are treated as quantum in nature, whereas the gravitational

field is considered fixed and classical.

1. We need to specify the quantum state of the field F . Let us label

it by | c & , and assume that it is a pure quantum state. The fundamental
equation governing the evolution of the system is the semiclassical

Einstein equation

G m n 1 L g m n 5
def

R m n 2
1

2
g m n 1 L g m n 5 2 8 p G ^ c | T m n | c & (3.1)

2. The gravitational background is treated as a classical field and it is

given a priori. This means that the left-hand side of the previous
equation is totally determined by the background metric g m n of a

Friedmann±Robertson±Walker cosmology.

3. It can be shown that ^ c | T m n | c & expressed in a certain coordinate

system yields the expectation values of the energy, pressure, and

trace of the quantum field in the chosen state | c & . One needs to
develop a scheme to derive from these quantities the physical,

renormalized and covariantly conserved ones.

4. The scheme used to regularize and renormalize the divergences of

^ c | T m n | c & is adiabatic subtraction and the mode integrals will be

calculated with a momentum cutoff [3].
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One defines ^ c | T m n | c & R 5
def

^ c | T m n | c & 2 ^ c | T m n | c & A and by means of5.
an adiabatic particle interpretation, one obtains physically intuitive

expressions for the energy, pressure, and trace of the quantum field

in the sense that they split naturally into a vacuum polarization term

and a particle creation contribution.

4. QUANTUM SCALAR FIELD IN A DE SITTER SPACETIME

In this section we consider a quantum scalar field in a de Sitter gravita-
tional background. We use a coordinate system [4] in which the spatial

sections have curvature k 5 1 1, and the scale factor is a(t) 5 Z 2 1 cosh(Zt).
In comoving coordinates the metric is given by

ds2 5 2 dt 2 1 C(t)hij (x) dx i ^ dx j, gtt 5 2 1, gij 5 C(t)hij (x)

(4.1)

where hij(x) is the metric of a three-dimensional sphere, and C(t) 5 a2(t).
Notice that the scalar curvature of this four-dimensional manifold is R 5 12Z 2.

The wave equation for a massive scalar field and arbitrarily coupled to

the curvature is

[ 2 N 1 m2 1 j R] F (t, x) 5 0.

In the coordinate system we are using (comoving coordinates) the N operator
is given by

Nf 5 2 fÈ 2 3HfÇ 1
1

C
D (3) f, H(t) 5

aÇ (t)

a(t)
(4.2)

and D (3) is the Laplace±Beltrami operator on the three-dimensional spacelike

hypersurfaces (spheres, in this case, as k 5 1 1). The equation of motion

for the scalar field propagating in this cosmological model is

F È (t, x) 1 3H(t) F Ç (t, x) 2
1

C(t)
D (3) F (t, x) 1 [m2 1 j R(t)] F (t, x) 5 0. (4.3)

Due to the symmetry of the cosmological background this equation is separa-

ble and we can decompose the field F in terms of creation and annihilation

operators as follows:

F (t, x) 5
1

[a(t)]3/2 o
k,l,m

[aklm fk(t)=klm(x) 1 a ²
klm f*k (t)=*klm (x)] (4.4)
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with

D (3)=klm(x) 5 2 k(k 1 2)=klm(x), (4.5)

k 5 0,1,2, . . . , l 5 0,1,2, . . . , k 2 1, m 5 2 l, . . . , 1 l.

The equation of motion for the mode functions fk(t) is given by

fÈ k(t) 1 V 2
k(t)fk(t) 5 0 (4.6)

with

V 2
k(t) 5 Z 2 F g 2 1 1 k 1

1

2 2 1 k 1
3

2 2 sech2(Zt) G ,

g 2 5
m2

Z 2 1 12 1 j 2
1

6 2 2
1

4

In the remote past and future (t ® 6 ` ), V 2
k tends to the constant (time

independent) value limt ® 6 ` V 2
k 5 Z 2 g 2, and we can find exact solutions for

the mode functions such that at early and late times, respectively, they tend

to adiabatic mode functions. They are defined as follows:

lim
t ® 6 `

fk( 6 )(t) 5 fÄk(t), fÄk(t) 5
1

[2 V k(t]
1/2 exp F 2 i #

t

dt8 V k(t8) G .(4.7)

Notice that fk( 2 )(t) Þ fk( 1 )(t) and that their corresponding vacuum states are
nonunitarily equivalent. In fact these two families of solutions { fk( 2 ), f*k( 2 )}

and { fk( 1 ), f*k( 1 )} are related by the Bogoliubov transformation [2]

fk( 2 )(t) 5 a Ãk fk( 1 )(t) 1 b Ãk f *k( 1 )(t). (4.8)

If the initial vacuum state for the quantum field (in the Heisenberg representa-

tion) is | 0( 2 ) & , that is, the adiabatic vacuum at very early times, it is easy to
show that at later times, in the remote future, when the natural choice for a

set of adiabatic observers is { fk( 1 ), f*k( 1 )}, these inertial observers would

detect particle production given by the expectation value of the number

operator Nk( 1 ), (in the remote future basis) in the adiabatic vacuum at very

early times, that is,

^ 0( 2 ) | Nk( 1 ) | 0( 2 ) & 5
def

^ 0( 2 ) | a ²
klm( 1 )aklm( 1 ) | 0( 2 ) & 5 | b Ã2

k | 5 cosech2( p g ) Þ 0.

(4.9)

Notice that the number of particles produced does not depend on k and is time

independent. These observers (adiabatic in the remote future) will measure a

nonzero number of particles in the vacuum state | 0( 2 ) & . This is the Schwinger
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effect, which would have been completely missed in the vacuum state that

is de Sitter invariant [5]. Notice the similarity between this section and Section

2 as mentioned there.

5. INITIAL CONDITIONS AND ADIABATIC VACUUM

The application of these results to the early universe requires finite-time

initial conditions.5 In order to be able to do a particle interpretation (within

the limits that this concept has for an arbitrary spacetime), we introduce an

adiabatic basis defined as follows:

fÄk(t) 5
def 1

[2Wk(t)]1/2 exp F 2 i #
t

t0

dt8Wk(t8) G 5
def 1

[2Wk(t)]1/2 e 2 iSK(t)

Sk(t) 5
def #

t

t0

dt8Wk(t8). (5.1)

We want to allow for the most general solution of equation (4.6) that satisfies

adiabatic initial conditions at time t0. This implies that the exact solution fk
is related to the instantaneous adiabatic basis { fÄk , fÄ *k } by a generalized Bogoli-

ubov transformation

fk(t) 5
def

a k(t)fÄk(t) 1 b k(t)fÄ *k (t), | a k(t) | 2 2 | b k(t) | 2 5 1 (5.2)

as both sets of modes satisfy the Wronskian conditions

fk(t)fÇ *k (t) 2 fÇ k(t)f*k (t), fÄk(t)fÄ
Ç *k (t) 2 fÄÇ k(t)fÄ *k (t) 5 i. (5.3)

Notice that this Bogoliubov transformation is a time-dependent one, that is,

the coefficients a k and b k depend on time. We must also impose a condition

on fÇ k(t) in order to uniquely determine these coefficients. It is important to

mention at this point that fk and fÇ k are independent, but they are constrained

to satisfy the Wronskian condition. Therefore fÇ k has to be chosen in such a
way as to preserve the condition on the Wronskian. The most general choice is

fÇ k(t) 5
def F 2 iWk(t) 1

Vk(t)

2 G a k(t)fÄk(t)

1 F iWk(t) 1
Vk(t)

2 G b k(t)fÄ *k (t). (5.4)

5 One has in mind possible applications to the inflationary regime of the early universe.
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For now we leave Wk and Vk without specification and only mention that

both quantities are restricted to be real, and that at early and late times, Wk

has to tend to V k , and Vk has to vanish, so that we recover the ª inº and ª outº
exact solutions in the ª inº (remote past) and ª outº (remote future) regions.

Later, the problem at hand will guide us to decide which particular choice

is more convenient. These two conditions imply

a k(t) 5 ifÄ *k (t) F fÇ k(t) 2 1 iWk(t) 1
Vk(t)

2 2 fk(t) G
b k(t) 5 2 ifÄk(t) F fÇ k(t) 1 1 iWk(t) 2

Vk(t)

2 2 fk(t) G . (5.5)

In order to consider the most general initial conditions, we assume the

following:

1. At time t0 the system is in the vacuum state | 0 & defined by the
mode decomposition of equation (4.4). As we are working in the

Heisenberg representation, this means that at any time, the system

is in this vacuum state. Notice that this choice implies that the

state considered represents a distribution of matter that is spatially

homogeneous and isotropic, in consistency with the symmetries of

the underlying gravitational background.
2. At time t0 the initial value problem that we are going to analyze is

the following:

fk(t0) 5
def

[2Wk(t0)] 2 1/2, fÇ k(t0) 5
def F 2 iWk(t0) 1

Vk(t0)

2 G fk(t0). (5.6)

This condition restricts Vk to be a real function that vanishes at

early and late times, and Wk to tend to V k at late and early times,

too, so that we recover the ª inº and ª outº asymptotic behavior

lim
t0 ® 6 `

fk(t0) 5 fk( 6 )(t0). (5.7)

3. We define the particle occupation number in the kth mode, 1k(t),
as follows:

1k(t) 5
def

^ 0 | aÄ ²klm (t)aÄ klm (t) | 0 & 5 | b k(t) | 2. (5.8)

4. The adiabatic particle interpretation comes from the particular choice

of initial conditions a k(t0) 5 1 and b k(t0) 5 0; therefore, 1k(t0) 5
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0; that is, the initial state is an adiabatic vacuum state with respect

to the instantaneous adiabatic basis { fÄk , fÄ *k } . In general 1k(t) Þ 0

for t . t0, and there will be particle creation in this adiabatic sense.

6. ENERGY-MOMENTUM TENSOR FOR A DE SITTER
COSMOLOGY

The classical energy momentum tensor of a free scalar field can be

written as

T m n 5 (1 2 2 j )( - m F )( - n F ) 1 1 2 j 2
1

2 2 g m n g
a b ( - a F )( - b F )

2 2 j F ¹ m ¹ n F 1 2 j g m n F N F 1 j G m n F 2 2
1

2
m2g m n F 2

and the trace is given by

T 5
def

g m n T m n 5 (6 j 2 1)g m n ( - m F )( - n F )

1 6 j F N F 2 j R F 2 2 2m2 F 2. (6.1)

If we make use of equation (4.2) we can write for the components of the

energy-momentum tensor

Ttt 5
def

e 5
1

2
F Ç F Ç 2

1

2C
F D (3) F 1 6 j H F F Ç

1 3 j 1 H 2 1
k
C 2 F 2 1

m2

2
F 2 (6.2)

gijTij 5
def

3p 5 1 3

2
2 6 j 2 F Ç F Ç 1

1

2C
F D (3) F 2 6 j f F È 2 12 j H F F Ç

2 j 1 6HÇ 1 9H 2 1
3 k
C 2 F 2 2

3m2

2
F 2 (6.3)

T 5 (1 2 6 j ) F Ç F Ç 1
1

C
F D (3) F 2 6 j F F È 2 18 j H F F Ç

2 j R F 2 2 2m2 F 2. (6.4)

We know that the energy, the isotropic pressure and the trace are not indepen-

dent variables, but are indeed related by the relation T 5 2 e 1 3p (which

is always a useful way to check one’ s calculation). If we make use of equation
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(4.3) to get rid of the terms proportional to F F È , we can write for the

components of the classical T m n ,
6

e 5
1

2
F Ç F Ç 2

1

2C
F D (3) F 1 6 j H F F Ç 1 3 j 1 H 2 1

k
C 2 F 2 1

m2

2
F 2(6.5)

T 5 (1 2 6 j ) F Ç F Ç 1 (1 2 6 j )
1

C
F D (3) F 1 j (6 j 2 1)R F 2

1 (6 j 2 2)m2 F 2. (6.6)

We are now ready to calculate the expectation value of the energy-momentum

tensor in the adiabatic vacuum state defined in the previous section. It is at

this stage that we restrict our study to the case of j 5 1/6, that is, a conformal

coupling between the scalar field and the scalar curvature. It can be shown

that it is no loss of generality [6]. The bare energy and trace are

^ e & 5
1

2 p 2a3 o
1 `

k 5 0
(k 1 1)2 F 1

2
| fÇ k | 2 2

H

2
R( f*k fÇ k) 1 1 v 2

k

2
1

H 2

8 2 | fk | 2 G (6.7)

^ T & 5 2
m2

2 p 2a3 o
1 `

k 5 0

(k 1 1)2 | fk | 2. (6.8)

We know that these mode sums have ultraviolet divergences, and that we must

choose a particular regularization method to subtract them. In the particular

cosmological model considered it is very helpful to carry out the regularisation
of the energy-momentum tensor by adiabatic methods [7]. It is well known

that to reproduce all the divergences of ^ T m n & we need to calculate the adiabatic

frequency to an order which includes all terms involving no more than four

derivatives with respect to the comoving time variable t [3].

7. ADIABATIC EXPANSION AND REGULARIZATION

In this section we present the adiabatic expansion to calculate the adia-

batic frequency up to second adiabatic order, that is, up to two derivatives

(with respect to comoving time) in the metric tensor. In the most general
case one needs to carry out the full fourth-order adiabatic subtraction. But

in this case, and as we are considering a conformally coupled massive field,

it is well known that the divergent fourth adiabatic order terms are proportional

to (6 j 2 1), and therefore vanish. There is a second reason to carry out the

subtraction only to second order, and this has to do with the backreaction

6 From now on the equation for the isotropic pressure is not given, as it sufficient to calculate
the trace and the energy.
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problem, which being out of the scope of this paper, will be discussed

elsewhere [8]. The exact mode functions fk satisfy equation (4.6),

fÈ k(t) 1 V 2
k(t)fk(t) 5 0. (7.1)

We can look for solutions of semiclassical nature (WKB)

fÄk(t) 5
1

[2Wk(t)]1/2 exp F 2 i #
t

t0

dt8 Wk(t8) G (7.2)

with Wk(t) defined by [9]

W 2
k 5 V 2

k 1
3

4

WÇ 2
k

W 2
k

2
1

2

WÈ
k

Wk

with V 2
k 5

k2

C
1 m2 2

1

2 1 HÇ 1
H 2

2 2 .

(7.3)

In order to solve for Wk(t) we need to carry out the following iteration:

W (0)2
k [ v 2

k 5
k2

C
1 m2 (7.4)

W (2)2
k [ V 2

k 1
3

4

WÇ (0)2
k

W (0)2
k

2
1

2

WÈ (0)
k

W (0)
k

5 V 2
k 1

3

4

v Ç 2
k

v 2
k

2
1

2

v Ç k

v k

(7.5)

W (4)2
k [ V 2

k 1
3

4

WÇ (2)2
k

W (2)2
k

2
1

2

WÇ (2)
k

W (2)
k

. (7.6)

Let us consider the second adiabatic order mode functions, as for a confor-

mally coupled massive field we do not need to go to adiabatic order four:

f (2)
k (t) 5

def 1

[2W (2)
k (t)]1/2 exp F 2 i #

t

t0

dt8 W (2)
k (t8) G . (7.7)

We need to calculate the energy, pressure, and trace for these modes, as these

contributions will be the ones to be subtracted in the adiabatic regularization

scheme. The quantities needed are

| f (2)
k | 2 5

1

2W (2)
k

, R[ fÇ (2)
k f (2)*

k ] 5 2
WÇ (2)

k

4W (2)2
k

, (7.8)

| fÇ (2)
k | 2 5

1

2W (2)
k 1 W (2)2

k 1
WÇ (2)2

k

4W (2)2
k 2
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Our goal is to obtain a renormalized and covariantly conserved expectation

value for the energy-momentum tensor. By looking at the nature of the

divergences that are contained in ^ T m n & we conclude that they will be cancelled
by performing a second-order adiabatic subtraction [10]. Furthermore, if we

perform a higher order adiabatic subtraction, we do not obtain physical finite

values for the energy, pressure, and trace. How do we know? We can compare

[11] with other regularization techniques, such as covariant point splitting

[12], that yield a finite and covariantly conserved ^ T m n & .

8. PARTICLE CREATION IN A DE SITTER UNIVERSE

8.1 Discussion of the Choice of the Generalized Bogoliubov
Transformation

The symmetry of the FRW metric7 makes the field equations separable,
so that the modes satisfy a time-dependent harmonic oscillator type of differ-

ential equation. These equations have analytic solutions in very specific

cosmological backgrounds, and only for particular values of the coupling

between the quantum and the gravitational fields. It is therefore necessary

to develop a numerical scheme that can solve these equations for a wider

range of situations. However, there are some technical obstacles that have
to be overcome prior to carrying out any numerical simulation. The first is

the presence of divergences when calculating the expectation value of the

bare energy-momentum tensor in the vacuum state chosen. We need to regular-

ize and renormalize this expectation value to obtain the physical values for

the energy, trace, and pressure of the quantum field. The second is the fact

that in order to do a backreaction analysis the equations become fourth order
in time derivatives of the classical metric and a special scheme has to be

developed in order to solve them [14].

We have recently found that in order to isolate the divergences of the

energy, trace, and pressure, and to be able to have a physical and intuitive

understanding of particle creation, it is necessary to make a generalized
Bogoliubov transformation that relates the exact mode functions to the second

adiabatic order mode functions [6]. Such a transformation possesses the

following advantages:

1. The divergent structure of the energy, trace, and pressure becomes

transparent, and it is therefore natural to choose adiabatic subtraction

as our regularization scheme. Not only do we only need to go to
adiabatic order two (instead of four, as the fourth-order adiabatic

divergences are purely logarithmic), but the subtraction can be per-

7 A de Sitter cosmological model is a particular type of FRW universe.



Particle Creation in a de Sitter Universe 1285

formed before doing the numerical calculation, which is a great

advantage when carrying out the simulation.

2. With the new scheme the renormalized energy, trace, and pressure
satisfy the covariant conservation of the energy-momentum tensor;

the trace anomaly is recovered; and the physical parameters (energy,

trace, and pressure) have a very intuitive and physical interpretation

in terms of the number of particles created 1k and its first and

second time derivatives.

3. In four dimensions the expectation value of the energy-momentum
tensor has quartic, quadratic, and logarithmic divergences. With our

present scheme, it is not necessary to subtract the fourth adiabatic

order logarithmic divergences. They can be scaled away in a numeri-

cal calculation by a proper rescaling of the cutoff used in the mode

sums. This technical issue is a great simplification when carrying

out the numerical simulation.

Some other physical arguments that support our approach are:

4. In the most general case,8 it is well known that all the divergences

in ^ T m n & will be canceled by performing an adiabatic subtraction of

order four [3]. In a de Sitter universe and for j 5 1/6 the only

divergences appearing are of adiabatic order zero. We still need to

go to one adiabatic order higher, as there are finite pieces to be
subtracted that are adiabatic order two. These terms are crucial to

get the proper trace anomaly in the massless case.

5. If we perform a higher order adiabatic subtraction we do not obtain

the physical finite values for the energy, pressure, and trace. We

want to obtain the proper trace anomaly. It is at this stage that the

finite pieces become important, as one does not obtain the physical,
renormalized, and covariantly conserved ^ T m n & R if one does not

subtract all the finite terms needed.

6. How do we know that we are going to obtain a covariantly conserved

energy-momentum tensor? In order to assure ourselves, we only

need to compare with other covariant regularization schemes, such

as, for example covariant point splitting [12], that yield a finite
and covariantly conserved ^ T m n & . In particular, by choosing a point

splitting in the space direction, we can compare with adiabatic

subtraction by carrying out the mode integrals with a momentum

cutoff.

8 We are still limited to a FRW cosmological model, but the coupling constant j can take
any value.
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8.2. Bogoliubov Transformation and Initial Conditions

We start with the exact mode functions fk. We define the generalized

Bogoliubov transformation in terms of the instantaneous adiabatic basis (see
section 5).

fk(t) 5
def

a k(t) fÄk(t) 1 b k(t)fÄ *k (t) (8.1)

with a k and b k time-dependent functions. We know that this condition does

not uniquely determine a k and b k , and that we have to give an extra condition

(that is consistent with the Wronskian) on fÇ k ,

fÇ k(t) 5 F 2 iWk(t) 1
Vk(t)

2 G a k(t) fÄk(t)

1 F iWk(t) 1
Vk(t)

2 G b k(t) fÄ *k (t) (8.2)

with

fÄk(t) 5
1

[2Wk(t)]1/2 exp F 2 i #
t

t0

dt8 Wk(t8) G ,

Sk(t) 5
def #

t

t0

dt8 Wk(t8) (8.3)

W 2
k [ W (2)2

k 5 v 2
k 1 Ak ,

Ak 5 2
m2

2 v 2
k

(HÇ 1 3H 2) 1
5m4H 2

4 v 4
k

, (8.4)

Vk 5
def

2
v Ç k

v k

5 H 1 1 2
m2

v 2
k 2 .

These equations determine a k and b k uniquely,

a k(t) 5 ifÄ *k (t) F fÇ k(t) 2 1 iWk(t) 1
Vk(t)

2 2 fk(t) G
b k(t) 5 2 ifÄk(t) F fÇ k(t) 1 1 iWk(t) 2

Vk(t)

2 2 fk(t) G . (8.5)

Define also the following variables (adiabatic basis variables)9

9 R(z) and I(z) mean, respectively, the real and imaginary parts of the complex number z.
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1k(t) 5
def

b k(t) b *k (t) (8.6)

#R
k (t) 5

def
R[ a k(t) b *k (t) exp( 2 2iSk(t))] (8.7)

#I
k(t) 5

def
I[ a k(t) b *k (t) exp( 2 2iSk(t))] (8.8)

which can be used to write

| fk(t) | 2 5
1 1 21k(t)

2Wk(t)
1

#R
k (t)

Wk(t)
(8.9)

| fÇ k(t) | 2 5
1 1 21k (t)

2Wk(t) 1 W 2
k(t) 1

V2
k(t)

4 2
1

#R
k (t)

Wk(t) 1 2 W 2
k(t) 1

V2
k(t)

4 2 1 #I
k(t)Vk(t) (8.10)

R[ f *k (t) fÇ k(t)] 5
1 1 21k(t)

4Wk(t)
Vk(t) 1

#R
k (t)

2Wk(t)
Vk(t) 1 #I

k(t). (8.11)

We first have to choose the initial conditions. We choose adiabatic initial

conditions as described in Section 5:

fk(t0) 5 [2Wk(t0)] 2 1/2, fÇ k(t0) 5 F 2 iWk(t0) 1
Vk(t0)

2 G fk(t0) (8.12)

so that at t0 we have

a k(t0) 5 1, b k(t0) 5 0 (8.13)

therefore the labeling of adiabatic initial conditions.

We write now the equations for the bare energy and trace in terms of

the previously introduced adiabatic basis variables 1k , #R
k , and #I

k:

^ e & 5
1

4 p 2a3 o
1 `

k 5 0

(k 1 1)2[ e 1
k (1k 1 1/2) 1 e R

k #R
k 1 e I

k#
I
k] (8.14)

^ T & 5
1

4 p 2a3 o
1 `

k 5 0

(k 1 1)2[T1
k (1k 1 1/2) 1 T R

k #R
k 1 T I

k#I
k (8.15)

where

e 1
k 5

1

Wk 1 W 2
k 1

V 2
k

4
2

HVk

2
1 v 2

k 1
H 2

4 2 (8.16)

e R
k 5

1

wk 1 2 W 2
k 1

V 2
k

4
2

HVk

2
1 v 2

k 1
H 2

4 2 (8.17)
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e I
k 5 Vk 2 H (8.18)

T 1
k 5 2

2m2

Wk

, T R
k 5 2

2m2

Wk

, T I
k 5 0. (8.19)

8.3. Regularization and Renormalization

In the previous section we have been able to write the energy and trace

in terms of the instantaneous adiabatic basis variables in such a way that the

divergences are isolated and appear in the true vacuum contribution (vacuum

polarization) to the energy-momentum tensor, and the term in ^ T m n & coming
from particle creation is finite.

The energy and trace of the vacuum as ª measuredº by the instantaneous

adiabatic observers are, respectively, given by

^ e & vac 5
def 1

4 p 2a3 o
1 `

k 5 0

(k 1 1)2
e 1

k

2
(8.20)

^ T & vac 5
def 1

4 p 2a3 o
1 `

k 5 0
(k 1 1)2 T 1

k

2
(8.21)

and the energy and trace of the created particles ^ e & matter are, respectively,

given by

^ e & matter 5
def

^ e & 2 ^ e & vac 5
1

4 p 2a3 o
1 `

k 5 0

(k 1 1)2( e 1
k 1k 1 e R

k #R
k 1 e I

k#
I
k) (8.22)

^ T & matter 5
def

^ T & 2 ^ T & vac 5
1

4 p 2a3 o
1 `

k 5 0
(k 1 1)2(T 1

k 1k 1 T R
k #R

k 1 T I
k#

I
k) (8.23)

It would be desirable to know that all the divergences are buried in the

vacuum piece, so that we have a finite term that can be interpreted as only

due to particle creation. This is where the new approach presented here brings

good news, as it can be shown that all the divergences are contained in the
vacuum contribution [13] (in fact, as this is a new approach, it has to be

explicitly shown). We subtract up to adiabatic order two to obtain the renor-

malized energy-momentum tensor. For closed cosmological models the appro-

priate adiabatic subtraction is the one that has continuous measure [10]. This

means the following replacement:

o
1 `

k 5 0

(k 1 1)2 Þ #
1 `

0

dk k2.
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We define the renormalized energy and trace of the vacuum as follows:

^ e & R
vac 5

def
^ e & vac 2 ^ e & A2

vac (8.24)

^ T & R
vac 5

def
^ T & vac 2 ^ T & A2

vac (8.25)

where the second-order adiabatic energy and trace are given by

^ e & A2
vac 5

1

4 p 2a3 #
1 `

0

dk k2 1 v k 1
H 2m4

8 v 5
k 2

5
1

4 p 2a3 o
1 `

k 5 0

(k 1 1)2 1 v k 1
H 2m4

8 v 5
k 2 2 ^ e & Plana

vac (8.26)

^ T & A2
vac 5 2

1

4 p 2a3 #
1 `

0

dk k2 F m2

v k
1

m4

4 v 5
k

(HÇ 1 3H 2) 2
5m6H 2

8 v 7
k G

5 2
1

4 p 2a3 o
1 `

k 5 0
(k 1 1)2 F m2

v k

1
m4

4 v 5
k

(HÇ 1 3H 2) 2
5m6H 2

8 v 7
k G 2 ^ T & Plana

vac

(8.27)

with the Plana terms being a finite contribution [10]. It can be shown (by

carrying out the adiabatic expansion of Wk; see Section 7) that as far as the

divergent terms are concerned

Divergences of ( ^ T m n & vac) 5 Divergences of ( ^ T m n & A2
vac) (8.28)

We define the renormalized energy-momentum tensor as

^ T m n & R 5
def

^ T m n & 2 ^ T m n & A2
vac 5 ^ T m n & vac 1 ^ T m n & matter 2 ^ T m n & A2

vac (8.29)

9. NUMERICAL RESULTS

In this section we present numerical results for different finite-time

initial conditions. In all four cases considered the parameters are m 5 0.6,

j 5 1/6 and we have studied the evolution of 100 modes.

Before presenting the results it is interesting to describe the physics of

the process taking place. We study the evolution of the mode fk(t) as a function

of time (k [ kcom is the comoving momentum). The physical momentum
associated with this mode is kphy 5 kcom/a(t). For a de Sitter universe the

characteristic length scale is the inverse of the Hubble time function H 2 1 5
a/aÇ . It is therefore reasonable to expect that particle production will occur

when horizon crossing takes place. By this we mean the following:
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kphy } H(t) Þ kphy }
aÇ (t)

a(t)
. (9.1)

Let us denote by tk the time at which the mode fk(t) crosses the horizon. The

equation defining tk is

kcom } aÇ (tk). (9.2)

In this representation of the de Sitter universe the scale factor is a(t) 5 Z 2 1

cosh(Zt) and it can be easily seen that there are two times of crossing for

each mode fk. The first one takes place at 2 tk , when the mode is entering

the horizon, and the second one at 1 tk , when the mode is leaving the horizon.

In this sense, we can expect two resonances for the number of particles

created in the kth mode at 6 tk. We write then kcom 5 : aÇ (tk) with : a
proportionality constant that will be determined from the numerical simula-

tions. We also expect to have a constant particle production rate when the

mode is inside the horizon, that is, between 2 tk and tk. To summarize the

previous comments: at the initial time t0 the mode fk is such that b k(t0) 5 0,

so that no particles are present; particle production in the kth mode will be

relevant at the horizon crossing times ( 6 tk); when the mode is inside the
horizon, particle production is frozen; once the mode exits the horizon, it

freezes again, contributing to a constant rate of particle production.

It is important to make a comment about the late-time behavior of the

system. We know that for any time t

fk(t) 5 a k(t)fÄk(t) 1 b k(t)fÄ *k (t). (9.3)

We also know that there are exact solutions fk( 1 ) such that at late times they

have adiabatic behavior

lim
t ® 6 `

fk( 6 )(t) 5 fÄk(t). (9.4)

Both fk and fk( 1 ) are exact solutions of the mode equation (4.6), and therefore

they must be related by a time-independent Bogoliubov transformation

fk(t) 5 Ak fk( 1 )(t) 1 Bk fÄ *k( 1 )(t). (9.5)

It is then easy to see that the later-time behavior of a k and b k is determined

by the coefficients Ak and Bk:

lim
t ® 1 `

a k(t) 5 Ak , lim
t ® 1 `

b k(t) 5 Bk. (9.6)

We call this regime the asymptotic late-time regime, and it corresponds to

the freezeout of the modes once they leave the horizon at time 1 tk. The

following three situations can arise:
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1. t0 , 2 tk. In this case the mode will enter the horizon at 2 tk , then

freeze inside the horizon, and finally exit at time tk , to reach its

asymptotic late-time regime. The mode has two resonances at 6 tk.
2. 2 tk , t0 , tk. In this case the mode is born inside the horizon, and

it will exit at time tk , to reach its asymptotic late-time regime. The

mode has one resonance at tk.
3. t0 . tk. The mode is born outside the horizon, and will never get

inside it. There is no resonance in this case, and the particle number

has a smooth transition from zero to its asymptotic late regime.

9.1. Initial Time t0 5 2 8

This initial condition corresponds to the first case for all the modes

considered in the simulation. The two horizon crossings can be seen in Fig.

1. The middle plateau corresponds to the time the modes spend inside the

horizon, and the final plateau corresponds to the late-time asymptotic regime.

Figure 2 shows the cutoff dependence of ^ e & matter. This is so because the

number of modes considered is not high enough. Notice also that the higher
the k, the earlier the first horizon crossing takes place, and there are many

more modes that contribute significantly and have not been included in

the simulation.

Fig. 1. Time evolution of the particle number Nk for k 5 0, 1, 4, 9, 19, 49, and 99.
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Fig. 2. Time evolution of the energy of the created particles for k 5 49 and 99.

9.2. Initial Time t0 5 2 3

The zero mode presents two resonances. Modes 1 and 4 are born after

their first horizon crossing could have taken place. The rest of the modes

are born at times such that they are still not excited when they are inside the

horizon (there is no middle plateau for them; see Fig. 3), and only show one
resonance upon exiting.

Figure 4 shows a small cutoff dependence of ^ T & matter . This is so because

the number of modes considered is high enough to take into account all those

that contribute.

9.3. Initial Time t0 5 0

In Fig. 5 it can be seen that this initial condition corresponds to one in

which all the modes considered show one resonance only. They are born

inside the horizon and therefore can only exit it at time tk.
In Fig. 6 we can see that for times before 4 we have considered enough

modes to yield the full finite contribution to the trace (dotted), pressure

(dashed), and energy (solid) of the created particles. At late times more modes

should be taken into account.



Particle Creation in a de Sitter Universe 1293

Fig. 3. Time evolution of the particle number Nk for k 5 0, 1, 4, 9, 19, 49, and 99.

Fig. 4. Time evolution of the trace of the created particles for k 5 49 and 99.
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Fig. 5. Time evolution of the particle number for Nk for k 5 0, 1, 4, 19, 49, and 99.

Fig. 6. Time evolution of the trace, pressure, and energy of the created particles for k 5
49 and 99.
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9.4. Initial Time t0 5 3

In Fig. 7 it can be seen that modes 0 and 1 are born outside the horizon,

and in their late-time regime. Mode 4 is born almost at the same time as it

is exiting the horizon. The rest of the modes are born inside the horizon and

therefore they can only exit it at time tk.
In Fig. 8 we can see that for times before 4 we have considered enough

modes to yield the full finite contribution to the trace (dotted), pressure
(dashed), and energy (solid) of the created particles. At late times more modes

should be taken into account. This initial condition is very similar to the

previous one considered, t0 5 0.

10. CONCLUSIONS AND WORK IN PROGRESS

1. It is essential to choose appropriate initial conditions, as these deter-
mine the initial state of the quantum system.

2. If one is studying particle production in the early universe, it is

essential to consider non-conforma lly invariant fields.

3. We have introduced an adiabatic particle basis in which the energy-

momentum tensor has a very intuitive and physical meaning. The

divergent terms correspond to vacuum polarization, and the finite
terms are particle production contributions.

Fig. 7. Time evolution of the particle number Nk for k 5 0, 1, 4, 9, 19, 49, and 99.
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Fig. 8. Time evolution of the trace, pressure, and energy of the created particles for k 5
49 and 99.

4. We have regularized ^ T m n & by performing a second-order adia-

batic subtraction.

5. The particular choice of j 5 1/6 can be generalized, with no essential

changes in the formalism.
6. The numerical results presented display the nature of the particle

production effect, showing that it becomes relevant whenever there

is horizon crossing. All three possible scenarios (before crossing,

inside, and after crossing the horizon) have been considered.

7. At the moment we have some hints that the backreaction (of the

quantum matter fields on the classical gravitational background)
will be important, as the values of the energy, pressure, and trace

are not red-shifted away (due to the expansion of the cosmological

model) in the time evolution of the system (see Figs. 6 and 8).

8. The formalism presented here can be applied for arbitrary j , m, and

a(t). For example, when m 5 0 5 j we could treat a linearized

quantum gravitational field.
9. The study of interacting field theories is also part of the future

application of this formalism.

10. A proper study of backreaction should include the dynamics of the

scale factor a(t).
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